Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math>

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> in the formula for period.

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mn>2</mn><mo>|</mo></mrow></mrow></mfrac></mstyle></math>

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Period: <math><mstyle displaystyle="true"><mfrac><mrow><menclose notation="updiagonalstrike"><mn>2</mn></menclose><mi>π</mi></mrow><mrow><menclose notation="updiagonalstrike"><mn>2</mn></menclose></mrow></mfrac></mstyle></math>

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Move the negative in front of the fraction.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Find the vertical shift <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Vertical Shift: <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to the left)

Vertical Shift: <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math>

Do you know how to Find Amplitude, Period, and Phase Shift f(x)=-4sin(2x+pi)-5? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | six hundred seventy-one million nine hundred thirteen thousand nine hundred sixteen |
---|

- 671913916 has 16 divisors, whose sum is
**1600736256** - The reverse of 671913916 is
**619319176** - Previous prime number is
**17**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 43
- Digital Root 7

Name | eight hundred seventy-two million eight hundred seventy-eight thousand five hundred twenty-three |
---|

- 872878523 has 4 divisors, whose sum is
**952231128** - The reverse of 872878523 is
**325878278** - Previous prime number is
**11**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 50
- Digital Root 5

Name | two billion twenty-eight million one hundred seventy-six thousand eight hundred twenty-three |
---|

- 2028176823 has 16 divisors, whose sum is
**2987801856** - The reverse of 2028176823 is
**3286718202** - Previous prime number is
**23**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 39
- Digital Root 3