To convert radians to degrees, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> , since a full circle is <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> or <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians.

Simplify the numerator.

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

Evaluate <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mstyle></math> to get <math><mstyle displaystyle="true"><mn>0.08748866</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.08748866</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>0.08748866</mn></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>55</mn><mo>)</mo></mrow></mstyle></math> to get <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>1.42814800</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>0.08748866</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>1.51563667</mn></mstyle></math> .

Simplify the denominator.

Remove parentheses.

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

Evaluate <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mstyle></math> to get <math><mstyle displaystyle="true"><mn>0.08748866</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.08748866</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>0.08748866</mn></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>55</mn><mo>)</mo></mrow></mstyle></math> to get <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>0.08748866</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>0.12494676</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>0.12494676</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mn>0.87505323</mn></mstyle></math> .

Simplify the expression.

Divide <math><mstyle displaystyle="true"><mo>-</mo><mn>1.51563667</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.87505323</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> .

Write <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn></mstyle></math> as a fraction with denominator <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1.73205080</mn></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> to get <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1.73205080</mn><mo>⋅</mo><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>311.76914536</mn></mstyle></math> .

Move the negative in front of the fraction.

Factor <math><mstyle displaystyle="true"><mn>311.76914536</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>311.76914536</mn></mstyle></math> .

Multiply by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Separate fractions.

Replace <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> with an approximation.

Divide <math><mstyle displaystyle="true"><mn>311.76914536</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3.14159265</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mn>99.23920117</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>99.23920117</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mn>99.23920117</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>99.23920117</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>99.23920117</mn></mstyle></math> .

Convert to a decimal.

For angles smaller than <math><mstyle displaystyle="true"><mn>0</mn><mi>°</mi></mstyle></math> , add <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> to the angle until the angle is larger than <math><mstyle displaystyle="true"><mn>0</mn><mi>°</mi></mstyle></math> .

The angle is in the third quadrant.

Quadrant <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Do you know how to Find the Quadrant of the Angle (tan(175)-tan(55))/(1+tan(175)tan(55))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion two hundred seventy-one million eight hundred thirty-six thousand five hundred sixty-nine |
---|

- 1271836569 has 16 divisors, whose sum is
**1705923072** - The reverse of 1271836569 is
**9656381721** - Previous prime number is
**1097**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | one billion five hundred sixty-nine million one hundred forty-nine thousand fifteen |
---|

- 1569149015 has 8 divisors, whose sum is
**2151975840** - The reverse of 1569149015 is
**5109419651** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 41
- Digital Root 5

Name | one billion nine hundred forty-five million four hundred nineteen thousand two hundred ninety-six |
---|

- 1945419296 has 128 divisors, whose sum is
**15282449820** - The reverse of 1945419296 is
**6929145491** - Previous prime number is
**29**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 50
- Digital Root 5