Rewrite the equation as <math><mstyle displaystyle="true"><mn>14852</mn><mi>y</mi><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>34</mn></mrow></mfrac></mstyle></math> .

Divide each term by <math><mstyle displaystyle="true"><mn>14852</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>14852</mn><mi>y</mi><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>34</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>14852</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>14852</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi></mrow><mrow><mn>34</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>14852</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi></mrow><mrow><mn>34</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>14852</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>34</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>14852</mn></mstyle></math> .

The slope-intercept form is <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>b</mi></mstyle></math> , where <math><mstyle displaystyle="true"><mi>m</mi></mstyle></math> is the slope and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> is the y-intercept.

Reorder terms.

Find the values of <math><mstyle displaystyle="true"><mi>m</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> using the form <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>b</mi></mstyle></math> .

The slope of the line is the value of <math><mstyle displaystyle="true"><mi>m</mi></mstyle></math> , and the y-intercept is the value of <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> .

Slope: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>504968</mn></mrow></mfrac></mstyle></math>

y-intercept: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math>

Slope: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>504968</mn></mrow></mfrac></mstyle></math>

y-intercept: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math>

Find the x-intercept.

To find the x-intercept(s), substitute in <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> and solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Set the numerator equal to zero.

x-intercept(s) in point form.

x-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math>

x-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math>

Find the y-intercept.

To find the y-intercept(s), substitute in <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and solve for <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> .

Solve the equation.

Remove parentheses.

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>504968</mn></mstyle></math> .

y-intercept(s) in point form.

y-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math>

y-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math>

Choose <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to substitute in for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to find the ordered pair.

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the expression.

The final answer is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>504968</mn></mrow></mfrac></mstyle></math> .

The <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> value at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>504968</mn></mrow></mfrac></mstyle></math> .

Create a table of the <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> values.

Graph the line using the slope and the y-intercept, or the points.

Slope: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>504968</mn></mrow></mfrac></mstyle></math>

y-intercept: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math>

Do you know how to Graph (5x)/170=79y*(47(4))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | seven hundred eighty-seven million eight hundred seventy-three thousand seven hundred ninety-one |
---|

- 787873791 has 8 divisors, whose sum is
**1051194240** - The reverse of 787873791 is
**197378787** - Previous prime number is
**1523**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 57
- Digital Root 3

Name | five hundred seventy-five million six hundred twenty-nine thousand nine hundred fifteen |
---|

- 575629915 has 16 divisors, whose sum is
**806234112** - The reverse of 575629915 is
**519926575** - Previous prime number is
**47**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 49
- Digital Root 4

Name | eight hundred fifty-eight million six hundred seventy-nine thousand eight hundred twenty-five |
---|

- 858679825 has 32 divisors, whose sum is
**1303516800** - The reverse of 858679825 is
**528976858** - Previous prime number is
**1283**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 58
- Digital Root 4