For any <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> , vertical asymptotes occur at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>n</mi><mi>π</mi></mstyle></math> , where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer. Use the basic period for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>s</mi><mi>e</mi><mi>c</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , to find the vertical asymptotes for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>3</mn><mi>sec</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> . Set the inside of the secant function, <math><mstyle displaystyle="true"><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> , for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>a</mi><mi>sec</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> equal to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to find where the vertical asymptote occurs for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>3</mn><mi>sec</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply both sides of the equation by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Simplify both sides of the equation.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify <math><mstyle displaystyle="true"><mn>7</mn><mo>⋅</mo><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>7</mn><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mo>-</mo><mn>7</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Move the negative in front of the fraction.

Set the inside of the secant function <math><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> equal to <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply both sides of the equation by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Simplify both sides of the equation.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mn>7</mn><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

The basic period for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>3</mn><mi>sec</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> will occur at <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>21</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , where <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>21</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> are vertical asymptotes.

Find the period <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> to find where the vertical asymptotes exist. Vertical asymptotes occur every half period.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The vertical asymptotes for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>3</mn><mi>sec</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> occur at <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> , <math><mstyle displaystyle="true"><mfrac><mrow><mn>21</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> , and every <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>7</mn><mi>π</mi><mi>n</mi></mstyle></math> , where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer. This is half of the period.

Secant only has vertical asymptotes.

No Horizontal Asymptotes

No Oblique Asymptotes

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>7</mn><mi>π</mi><mi>n</mi></mstyle></math> where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer

No Horizontal Asymptotes

No Oblique Asymptotes

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>7</mn><mi>π</mi><mi>n</mi></mstyle></math> where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer

Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sec</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Since the graph of the function <math><mstyle displaystyle="true"><mi>s</mi><mi>e</mi><mi>c</mi></mstyle></math> does not have a maximum or minimum value, there can be no value for the amplitude.

Amplitude: None

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>0</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn><mo>⋅</mo><mn>7</mn></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Find the vertical shift <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: None

Period: <math><mstyle displaystyle="true"><mn>14</mn><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> (<math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>7</mn><mi>π</mi><mi>n</mi></mstyle></math> where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer

Amplitude: None

Period: <math><mstyle displaystyle="true"><mn>14</mn><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> (<math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Do you know how to Graph 3sec(1/7x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion nine hundred fourteen million nine hundred fifty-nine thousand nine hundred ninety-four |
---|

- 1914959994 has 8 divisors, whose sum is
**3829920000** - The reverse of 1914959994 is
**4999594191** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 60
- Digital Root 6

Name | two hundred sixty-five million five hundred ninety-nine thousand four hundred twenty-nine |
---|

- 265599429 has 16 divisors, whose sum is
**372357120** - The reverse of 265599429 is
**924995562** - Previous prime number is
**61**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | one billion six hundred thirty-four million one hundred eleven thousand six hundred ninety-one |
---|

- 1634111691 has 8 divisors, whose sum is
**2253947280** - The reverse of 1634111691 is
**1961114361** - Previous prime number is
**29**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 33
- Digital Root 6