Simplify each term.

Apply the distributive property.

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

Move the negative in front of the fraction.

Apply the distributive property.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>3</mn><mi>d</mi><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>9</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mo>-</mo><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move the negative in front of the fraction.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>9</mn><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>9</mn><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify each term.

Simplify the numerator.

Factor <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mi>d</mi><mo>⋅</mo><mn>2</mn><mo>-</mo><mn>9</mn><mi>d</mi><mo>⋅</mo><mn>3</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mi>d</mi><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>9</mn><mi>d</mi><mo>⋅</mo><mn>3</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mi>d</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mo>-</mo><mn>9</mn><mo>⋅</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>9</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>27</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Move <math><mstyle displaystyle="true"><mo>-</mo><mn>25</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Move the negative in front of the fraction.

To write <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>9</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>9</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>27</mn></mstyle></math> .

Graph each side of the equation. The solution is the x-value of the point of intersection.

Do you know how to Solve Graphically 1/3*(d-4)-3/2*(3d-3)=7/12? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred forty-nine million three hundred sixty-six thousand two hundred twenty-two |
---|

- 1549366222 has 8 divisors, whose sum is
**2325873096** - The reverse of 1549366222 is
**2226639451** - Previous prime number is
**1277**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 40
- Digital Root 4

Name | seven hundred thirty-three million eight hundred sixty-nine thousand eight hundred eighty-four |
---|

- 733869884 has 16 divisors, whose sum is
**1801317096** - The reverse of 733869884 is
**488968337** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 56
- Digital Root 2

Name | one billion one hundred fifty-seven million nine hundred fifty-eight thousand two hundred eighty-two |
---|

- 1157958282 has 16 divisors, whose sum is
**1783425600** - The reverse of 1157958282 is
**2828597511** - Previous prime number is
**971**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 48
- Digital Root 3