Draw a triangle in the plane with vertices <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><msqrt><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and the origin. Then <math><mstyle displaystyle="true"><mi>arcsec</mi><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> is the angle between the positive x-axis and the ray beginning at the origin and passing through <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><msqrt><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>)</mo></mrow></mstyle></math> . Therefore, <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>arcsec</mi><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> .

Divide <math><mstyle displaystyle="true"><msqrt><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

One to any power is one.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Evaluate tan(arcsec(4))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred fifty-two million five hundred twenty-six thousand nine hundred seventy-three |
---|

- 1352526973 has 16 divisors, whose sum is
**1563162624** - The reverse of 1352526973 is
**3796252531** - Previous prime number is
**107**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 43
- Digital Root 7

Name | three hundred sixty-four million two hundred eighty-four thousand three hundred eighty-six |
---|

- 364284386 has 8 divisors, whose sum is
**554122944** - The reverse of 364284386 is
**683482463** - Previous prime number is
**71**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8

Name | one billion seven hundred fifty-six million five hundred thirty-one thousand five hundred eighty |
---|

- 1756531580 has 16 divisors, whose sum is
**4742635320** - The reverse of 1756531580 is
**0851356571** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 41
- Digital Root 5