The angle <math><mstyle displaystyle="true"><mn>45</mn></mstyle></math> is an angle where the values of the six trigonometric functions are known. Because this is the case, add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to keep the value the same.

Use the sum formula for cosine to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>+</mo><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>45</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>45</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Add <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Expand Using Sum/Difference Formulas cos(45)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred ninety-four million six hundred forty-eight thousand six hundred twenty-five |
---|

- 394648625 has 16 divisors, whose sum is
**428763456** - The reverse of 394648625 is
**526846493** - Previous prime number is
**43**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 47
- Digital Root 2

Name | one hundred ten million six hundred twenty-three thousand nine hundred ninety-six |
---|

- 110623996 has 32 divisors, whose sum is
**293640192** - The reverse of 110623996 is
**699326011** - Previous prime number is
**31**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 37
- Digital Root 1

Name | one billion eight hundred fifty-nine million three hundred six thousand five hundred eighty-three |
---|

- 1859306583 has 8 divisors, whose sum is
**2484454896** - The reverse of 1859306583 is
**3856039581** - Previous prime number is
**461**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3