Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>30</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

One to any power is one.

Raise <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>30</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

Raise <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Combine the numerators over the common denominator.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Do you know how to Simplify sin(150)^2+cos(30)^2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one hundred seventy-nine million four hundred ninety-three thousand six hundred forty-eight |
---|

- 179493648 has 128 divisors, whose sum is
**1212962688** - The reverse of 179493648 is
**846394971** - Previous prime number is
**3023**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | six hundred forty-eight million seven hundred thirty-seven thousand five |
---|

- 648737005 has 8 divisors, whose sum is
**681471360** - The reverse of 648737005 is
**500737846** - Previous prime number is
**47**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 40
- Digital Root 4

Name | one billion four hundred three million six hundred three thousand eight hundred eighteen |
---|

- 1403603818 has 8 divisors, whose sum is
**2105953380** - The reverse of 1403603818 is
**8183063041** - Previous prime number is
**3929**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 34
- Digital Root 7