Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.

Rewrite the equation as <math><mstyle displaystyle="true"><mi>x</mi><mo>⋅</mo><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mo>=</mo><mn>5</mn><mo>⋅</mo><mn>6</mn></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mi>x</mi><mo>⋅</mo><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math> .

Apply the distributive property.

Simplify the expression.

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>30</mn></mstyle></math> to the left side of the equation by subtracting it from both sides.

Use the quadratic formula to find the solutions.

Substitute the values <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mn>1</mn></mstyle></math> , <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>3</mn></mstyle></math> , and <math><mstyle displaystyle="true"><mi>c</mi><mo>=</mo><mo>-</mo><mn>30</mn></mstyle></math> into the quadratic formula and solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Simplify.

Simplify the numerator.

Raise <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>30</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>30</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>120</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The final answer is the combination of both solutions.

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Solve for x 5/x=(x+3)/6? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred seventy-three million six hundred eighty-seven thousand three hundred fifty-nine |
---|

- 373687359 has 16 divisors, whose sum is
**520756320** - The reverse of 373687359 is
**953786373** - Previous prime number is
**97**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | nine hundred fifty-six million five hundred eighty-two thousand two hundred sixty-nine |
---|

- 956582269 has 4 divisors, whose sum is
**956749696** - The reverse of 956582269 is
**962285659** - Previous prime number is
**5923**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 52
- Digital Root 7

Name | six hundred fifty-five million eight hundred five thousand forty-six |
---|

- 655805046 has 16 divisors, whose sum is
**1412503344** - The reverse of 655805046 is
**640508556** - Previous prime number is
**13**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3