Multiply the numerator and denominator of <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mo>-</mo><mi>i</mi></mrow></mfrac></mstyle></math> by the conjugate of <math><mstyle displaystyle="true"><mn>2</mn><mo>-</mo><mi>i</mi></mstyle></math> to make the denominator real.

Combine.

Multiply <math><mstyle displaystyle="true"><mn>2</mn><mo>+</mo><mi>i</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the denominator.

Expand <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>2</mn><mo>-</mo><mi>i</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>i</mi><mo>)</mo></mrow></mstyle></math> using the FOIL Method.

Apply the distributive property.

Apply the distributive property.

Apply the distributive property.

Simplify.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>i</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn><mi>i</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Simplify each term.

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Split the fraction <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mo>+</mo><mi>i</mi></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> into two fractions.

Do you know how to Simplify 1/(2-i)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion sixty-seven million four hundred ninety-nine thousand eight hundred one |
---|

- 1067499801 has 4 divisors, whose sum is
**1186110900** - The reverse of 1067499801 is
**1089947601** - Previous prime number is
**9**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | one billion three hundred eighty-four million seven hundred twenty-nine thousand two hundred thirty-six |
---|

- 1384729236 has 64 divisors, whose sum is
**4340952000** - The reverse of 1384729236 is
**6329274831** - Previous prime number is
**29**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | one billion eighty-two million two hundred ninety-eight thousand seven hundred forty-one |
---|

- 1082298741 has 8 divisors, whose sum is
**1505807040** - The reverse of 1082298741 is
**1478922801** - Previous prime number is
**23**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6