Rewrite the equation as <math><mstyle displaystyle="true"><msqrt><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mn>24</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>=</mo><mn>25</mn></mstyle></math> .

To remove the radical on the left side of the equation, square both sides of the equation.

Multiply the exponents in <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mn>24</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Raise <math><mstyle displaystyle="true"><mn>24</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Simplify.

Raise <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Move all terms not containing <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the right side of the equation.

Subtract <math><mstyle displaystyle="true"><mn>576</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>576</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>625</mn></mstyle></math> .

Take the square root of both sides of the equation to eliminate the exponent on the left side.

The complete solution is the result of both the positive and negative portions of the solution.

Simplify the right side of the equation.

Rewrite <math><mstyle displaystyle="true"><mn>49</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Do you know how to Solve for x 25 = square root of x^2+(24)^2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | eight hundred sixty-five million nine hundred sixty-one thousand six hundred twenty-seven |
---|

- 865961627 has 4 divisors, whose sum is
**871773600** - The reverse of 865961627 is
**726169568** - Previous prime number is
**149**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 50
- Digital Root 5

Name | seven hundred fifty-two million one hundred five thousand four hundred forty-eight |
---|

- 752105448 has 64 divisors, whose sum is
**4512633120** - The reverse of 752105448 is
**844501257** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | eight hundred eight million six hundred sixty-three thousand one hundred forty-two |
---|

- 808663142 has 16 divisors, whose sum is
**1459242240** - The reverse of 808663142 is
**241366808** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 38
- Digital Root 2