Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mn>60</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Find the Exact Value cot(240 degrees )? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one hundred forty-nine million one hundred thirteen thousand one hundred two |
---|

- 149113102 has 8 divisors, whose sum is
**235441800** - The reverse of 149113102 is
**201311941** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 22
- Digital Root 4

Name | one billion seven hundred four million one hundred eleven thousand six hundred eighty-seven |
---|

- 1704111687 has 8 divisors, whose sum is
**1894367280** - The reverse of 1704111687 is
**7861114071** - Previous prime number is
**2131**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 36
- Digital Root 9

Name | one billion three hundred sixty-four million seven hundred forty-two thousand five hundred forty-one |
---|

- 1364742541 has 8 divisors, whose sum is
**1445653440** - The reverse of 1364742541 is
**1452474631** - Previous prime number is
**2459**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 37
- Digital Root 1