To find the <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>,</mo><mo>-</mo><mfrac><mrow><mn>2</mn><msqrt><mn>6</mn></msqrt></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>,</mo><mo>-</mo><mfrac><mrow><mn>2</mn><msqrt><mn>6</mn></msqrt></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>2</mn><msqrt><mn>6</mn></msqrt></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Move the leading negative in <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn><msqrt><mn>6</mn></msqrt></mrow></mfrac></mstyle></math> into the numerator.

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Move the negative in front of the fraction.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><mn>6</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>6</mn></msqrt></mrow><mrow><msqrt><mn>6</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><mn>6</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>6</mn></msqrt></mrow><mrow><msqrt><mn>6</mn></msqrt></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><msqrt><mn>6</mn></msqrt></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>6</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>6</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>6</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>6</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>6</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Approximate the result.

Do you know how to Find the Cotangent Given the Point (1/5,-(2 square root of 6)/5)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | six hundred eighty-one million six hundred twenty-nine thousand eight hundred thirty-three |
---|

- 681629833 has 8 divisors, whose sum is
**705964680** - The reverse of 681629833 is
**338926186** - Previous prime number is
**877**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 46
- Digital Root 1

Name | one billion five hundred ninety-four million nine hundred two thousand nine hundred thirty-two |
---|

- 1594902932 has 32 divisors, whose sum is
**4104095040** - The reverse of 1594902932 is
**2392094951** - Previous prime number is
**39041**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 44
- Digital Root 8

Name | four hundred sixty-nine million eight hundred seventy-three thousand five hundred seventy-eight |
---|

- 469873578 has 16 divisors, whose sum is
**980606016** - The reverse of 469873578 is
**875378964** - Previous prime number is
**23**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 57
- Digital Root 3