Subtract <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> from both sides of the equation.

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the tangent.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mn>60</mn></mstyle></math> .

The tangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the third quadrant.

Add <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>60</mn><mo>-</mo><mn>180</mn><mi>°</mi></mstyle></math> .

The resulting angle of <math><mstyle displaystyle="true"><mn>120</mn><mi>°</mi></mstyle></math> is positive and coterminal with <math><mstyle displaystyle="true"><mo>-</mo><mn>60</mn><mo>-</mo><mn>180</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>60</mn></mstyle></math> to find the positive angle.

Subtract <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> degrees in both directions.

Consolidate the answers.

Do you know how to Solve for x in Degrees tan(x)+ square root of 3=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion nine hundred sixty-seven million six hundred thirty-eight thousand six hundred forty-four |
---|

- 1967638644 has 32 divisors, whose sum is
**5023762560** - The reverse of 1967638644 is
**4468367691** - Previous prime number is
**47**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 54
- Digital Root 9

Name | four hundred eighty-two million three hundred fifty thousand four hundred sixty-eight |
---|

- 482350468 has 8 divisors, whose sum is
**1085288562** - The reverse of 482350468 is
**864053284** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 40
- Digital Root 4

Name | three hundred ninety-eight million nine hundred ninety-three thousand two hundred ninety-seven |
---|

- 398993297 has 4 divisors, whose sum is
**399033636** - The reverse of 398993297 is
**792399893** - Previous prime number is
**17377**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 59
- Digital Root 5