Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Combine <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mrow><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mn>5</mn></mrow><mrow><mn>2</mn><mo>⋅</mo><mn>8</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mn>5</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mn>5</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Move <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> to the right)

Vertical Shift: None

Do you know how to Find Amplitude, Period, and Phase Shift y=4sin((8x)/5-pi/2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred sixty million three hundred ninety-seven thousand seven hundred ninety-two |
---|

- 1360397792 has 128 divisors, whose sum is
**11125179576** - The reverse of 1360397792 is
**2977930631** - Previous prime number is
**13**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | one billion one hundred seventy-nine million nine hundred twenty-three thousand seven hundred seventy-eight |
---|

- 1179923778 has 32 divisors, whose sum is
**3432506112** - The reverse of 1179923778 is
**8773299711** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 54
- Digital Root 9

Name | four hundred fifty-three million seven hundred eighty-seven thousand four hundred ninety-one |
---|

- 453787491 has 16 divisors, whose sum is
**626402304** - The reverse of 453787491 is
**194787354** - Previous prime number is
**47**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 48
- Digital Root 3