Add <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to both sides of the equation.

Divide each term in <math><mstyle displaystyle="true"><mn>25</mn><msup><mi>csc</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><msup><mi>csc</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Take the square root of both sides of the equation to eliminate the exponent on the left side.

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>4</mn></mrow><mrow><mn>25</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>4</mn></msqrt></mrow><mrow><msqrt><mn>25</mn></msqrt></mrow></mfrac></mstyle></math> .

Simplify the numerator.

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Simplify the denominator.

Rewrite <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Set up each of the solutions to solve for <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> .

The range of cosecant is <math><mstyle displaystyle="true"><mi>y</mi><mo>≤</mo><mo>-</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>y</mi><mo>≥</mo><mn>1</mn></mstyle></math> . Since <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> does not fall in this range, there is no solution.

No solution

No solution

The range of cosecant is <math><mstyle displaystyle="true"><mi>y</mi><mo>≤</mo><mo>-</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>y</mi><mo>≥</mo><mn>1</mn></mstyle></math> . Since <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> does not fall in this range, there is no solution.

No solution

No solution

Do you know how to Solve for θ in Degrees 25csc(theta)^2-4=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two hundred twenty-three million three hundred four thousand one hundred thirty-seven |
---|

- 223304137 has 4 divisors, whose sum is
**255204736** - The reverse of 223304137 is
**731403322** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 25
- Digital Root 7

Name | thirty-one million seven hundred twenty-eight thousand eight |
---|

- 31728008 has 64 divisors, whose sum is
**117790848** - The reverse of 31728008 is
**80082713** - Previous prime number is
**47**

- Is Prime? no
- Number parity even
- Number length 8
- Sum of Digits 29
- Digital Root 2

Name | one billion seven hundred forty-five million eight hundred six thousand three hundred five |
---|

- 1745806305 has 16 divisors, whose sum is
**2852722944** - The reverse of 1745806305 is
**5036085471** - Previous prime number is
**47**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 39
- Digital Root 3