Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>csc</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Since the graph of the function <math><mstyle displaystyle="true"><mi>c</mi><mi>s</mi><mi>c</mi></mstyle></math> does not have a maximum or minimum value, there can be no value for the amplitude.

Amplitude: None

Find the period of <math><mstyle displaystyle="true"><mn>2</mn><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mi>π</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of addition/subtraction of trig functions is the maximum of the individual periods.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math>

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

List the properties of the trigonometric function.

Amplitude: None

Period: <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> (<math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Do you know how to Find Amplitude, Period, and Phase Shift y=2csc(x-pi)+1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion eight hundred ninety-nine million three hundred sixty-four thousand three hundred twenty-one |
---|

- 1899364321 has 8 divisors, whose sum is
**2016164520** - The reverse of 1899364321 is
**1234639981** - Previous prime number is
**397**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 46
- Digital Root 1

Name | two billion seven hundred forty-nine thousand five hundred twenty |
---|

- 2000749520 has 256 divisors, whose sum is
**14006193408** - The reverse of 2000749520 is
**0259470002** - Previous prime number is
**121**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 29
- Digital Root 2

Name | one billion six hundred three million six hundred seventy-seven thousand one hundred eleven |
---|

- 1603677111 has 8 divisors, whose sum is
**2138674800** - The reverse of 1603677111 is
**1117763061** - Previous prime number is
**5113**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 33
- Digital Root 6