Take the square root of each side of the equation to set up the solution for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math>

Remove the perfect root factor <math><mstyle displaystyle="true"><mn>5</mn><mi>x</mi><mo>-</mo><mn>6</mn></mstyle></math> under the radical to solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>64</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>8</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Move all terms not containing <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the right side of the equation.

Add <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to both sides of the equation.

Add <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Divide each term by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>5</mn><mi>x</mi><mo>=</mo><mn>14</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

Move all terms not containing <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the right side of the equation.

Add <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to both sides of the equation.

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Divide each term by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>5</mn><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Move the negative in front of the fraction.

The complete solution is the result of both the positive and negative portions of the solution.

Do you know how to Solve Using the Square Root Property (5x-6)^2=64? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred eleven million eighty-nine thousand one hundred fifty-eight |
---|

- 2111089158 has 16 divisors, whose sum is
**5629571136** - The reverse of 2111089158 is
**8519801112** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 36
- Digital Root 9

Name | two hundred eighty-two million five hundred seventy-three thousand ninety |
---|

- 282573090 has 32 divisors, whose sum is
**583163712** - The reverse of 282573090 is
**090375282** - Previous prime number is
**107**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | two billion one hundred eight million seven hundred seventy-seven thousand seven hundred ninety-two |
---|

- 2108777792 has 256 divisors, whose sum is
**24071425452** - The reverse of 2108777792 is
**2977778012** - Previous prime number is
**473**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 50
- Digital Root 5