The discriminant of a quadratic is the expression inside the radical of the quadratic formula.

Substitute in the values of <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> , <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> , and <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> .

Simplify each term.

Raise <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>7</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>14</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>64</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>56</mn></mstyle></math> .

Do you know how to Find the Discriminant -7x^2+8x+2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | nine hundred thirty-seven million nine hundred sixty-eight thousand five hundred seventy-seven |
---|

- 937968577 has 16 divisors, whose sum is
**1171660672** - The reverse of 937968577 is
**775869739** - Previous prime number is
**67**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 61
- Digital Root 7

Name | four hundred eighty-five million five hundred thirty thousand nine hundred fifty-seven |
---|

- 485530957 has 8 divisors, whose sum is
**495141696** - The reverse of 485530957 is
**759035584** - Previous prime number is
**73**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 46
- Digital Root 1

Name | nine hundred two million eight hundred one thousand one hundred sixty-two |
---|

- 902801162 has 4 divisors, whose sum is
**1354201746** - The reverse of 902801162 is
**261108209** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 29
- Digital Root 2