Set the denominator in <math><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>12</mn><mi>x</mi><mo>+</mo><mn>27</mn></mrow></mfrac></mstyle></math> equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to find where the expression is undefined.

Factor <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>12</mn><mi>x</mi><mo>+</mo><mn>27</mn></mstyle></math> using the AC method.

Consider the form <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> . Find a pair of integers whose product is <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> . In this case, whose product is <math><mstyle displaystyle="true"><mn>27</mn></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn></mstyle></math> .

Write the factored form using these integers.

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and solve.

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> to both sides of the equation.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and solve.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to both sides of the equation.

The final solution is all the values that make <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>9</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>3</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> true.

The equation is undefined where the denominator equals <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the argument of a square root is less than <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , or the argument of a logarithm is less than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Do you know how to Find Where Undefined/Discontinuous y=(x-3)/(x^2-12x+27)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | four hundred ninety-nine million nine hundred fifty-two thousand nine hundred ninety-seven |
---|

- 499952997 has 16 divisors, whose sum is
**894693888** - The reverse of 499952997 is
**799259994** - Previous prime number is
**151**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 63
- Digital Root 9

Name | one billion six hundred fifty-one million five hundred twenty-four thousand one hundred seventy-three |
---|

- 1651524173 has 4 divisors, whose sum is
**1778564508** - The reverse of 1651524173 is
**3714251561** - Previous prime number is
**13**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 35
- Digital Root 8

Name | one billion two hundred forty million two hundred fourteen thousand seven hundred fifty-nine |
---|

- 1240214759 has 16 divisors, whose sum is
**1510886400** - The reverse of 1240214759 is
**9574120421** - Previous prime number is
**79**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 35
- Digital Root 8