Combine <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Check that the middle term is two times the product of the numbers being squared in the first term and third term.

Rewrite the polynomial.

Factor using the perfect square trinomial rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>b</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> , where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Do you know how to Factor x^2-2/3x+1/9? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two hundred fourteen million three hundred fourteen thousand seven hundred ninety-seven |
---|

- 214314797 has 8 divisors, whose sum is
**215910912** - The reverse of 214314797 is
**797413412** - Previous prime number is
**601**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 38
- Digital Root 2

Name | one billion two hundred eighty-one million three hundred sixty-eight thousand five hundred fifty-nine |
---|

- 1281368559 has 8 divisors, whose sum is
**1708680960** - The reverse of 1281368559 is
**9558631821** - Previous prime number is
**12107**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | one billion three hundred thirty million one hundred forty-eight thousand two hundred seventy-five |
---|

- 1330148275 has 8 divisors, whose sum is
**1387782032** - The reverse of 1330148275 is
**5728410331** - Previous prime number is
**313**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 34
- Digital Root 7