Combine <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Check that the middle term is two times the product of the numbers being squared in the first term and third term.

Rewrite the polynomial.

Factor using the perfect square trinomial rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>b</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> , where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Do you know how to Factor x^2-2/3x+1/9? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred forty-four million three hundred fifty-six thousand seventy-nine |
---|

- 1544356079 has 8 divisors, whose sum is
**1578633600** - The reverse of 1544356079 is
**9706534451** - Previous prime number is
**577**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 44
- Digital Root 8

Name | two billion sixty-five million five hundred thirty-one |
---|

- 2065000531 has 16 divisors, whose sum is
**2312006400** - The reverse of 2065000531 is
**1350005602** - Previous prime number is
**59**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 22
- Digital Root 4

Name | five hundred twenty-five million one hundred fifty-seven thousand eight hundred twenty-four |
---|

- 525157824 has 256 divisors, whose sum is
**7975837368** - The reverse of 525157824 is
**428751525** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3