For a polynomial of the form <math><mstyle displaystyle="true"><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> , rewrite the middle term as a sum of two terms whose product is <math><mstyle displaystyle="true"><mi>a</mi><mo>⋅</mo><mi>c</mi><mo>=</mo><mn>2</mn><mo>⋅</mo><mo>-</mo><mn>5</mn><mo>=</mo><mo>-</mo><mn>10</mn></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>9</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>9</mn><mi>x</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> plus <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math>

Apply the distributive property.

Factor out the greatest common factor from each group.

Group the first two terms and the last two terms.

Factor out the greatest common factor (GCF) from each group.

Factor the polynomial by factoring out the greatest common factor, <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mstyle></math> .

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

Divide each term by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>=</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> from both sides of the equation.

The final solution is all the values that make <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>5</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> true.

Do you know how to Solve by Factoring 2x^2+9x-5=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one hundred ninety-two million two hundred three thousand three hundred sixty-six |
---|

- 192203366 has 16 divisors, whose sum is
**294987840** - The reverse of 192203366 is
**663302291** - Previous prime number is
**79**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 32
- Digital Root 5

Name | two billion fifty-six million seven hundred sixty-one thousand four hundred thirty-three |
---|

- 2056761433 has 8 divisors, whose sum is
**2174893056** - The reverse of 2056761433 is
**3341676502** - Previous prime number is
**41**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 37
- Digital Root 1

Name | seven hundred thirty-five million five hundred ninety thousand seven hundred eight |
---|

- 735590708 has 8 divisors, whose sum is
**1655079102** - The reverse of 735590708 is
**807095537** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8