Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>20</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>20</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>20</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>5</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>20</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn><mo>+</mo><mn>2</mn><mi>i</mi><msqrt><mn>5</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>24</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>i</mi><msqrt><mn>5</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mo>⋅</mo><mo>-</mo><mn>4</mn><mo>+</mo><mn>2</mn><mrow><mo>(</mo><mi>i</mi><msqrt><mn>5</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>24</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>i</mi><msqrt><mn>5</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>5</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Do you know how to Evaluate (-8+ square root of -20)/24? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one hundred seventy-two million two hundred forty-five thousand seven hundred eighty-eight |
---|

- 172245788 has 32 divisors, whose sum is
**398520000** - The reverse of 172245788 is
**887542271** - Previous prime number is
**47**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8

Name | one billion two hundred four million two hundred eighty-nine thousand two hundred fifteen |
---|

- 1204289215 has 16 divisors, whose sum is
**1455130656** - The reverse of 1204289215 is
**5129824021** - Previous prime number is
**401**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 34
- Digital Root 7

Name | three hundred seventy-five million four hundred twenty-two thousand four hundred fifty-one |
---|

- 375422451 has 8 divisors, whose sum is
**500767680** - The reverse of 375422451 is
**154224573** - Previous prime number is
**2579**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 33
- Digital Root 6