Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>50</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>50</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>50</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>50</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>50</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>50</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>20</mn><mo>+</mo><mn>5</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>20</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mo>⋅</mo><mo>-</mo><mn>4</mn><mo>+</mo><mn>5</mn><mrow><mo>(</mo><mi>i</mi><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Do you know how to Evaluate (-20+ square root of -50)/60? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one hundred thirty-eight million two hundred seventy-four thousand eight hundred eleven |
---|

- 138274811 has 4 divisors, whose sum is
**138322800** - The reverse of 138274811 is
**118472831** - Previous prime number is
**3079**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 35
- Digital Root 8

Name | one billion two hundred ninety-three million seventy thousand six hundred eight |
---|

- 1293070608 has 512 divisors, whose sum is
**9937572480** - The reverse of 1293070608 is
**8060703921** - Previous prime number is
**73**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 36
- Digital Root 9

Name | seven hundred seventy-six million twenty-two thousand three hundred forty-three |
---|

- 776022343 has 4 divisors, whose sum is
**790664328** - The reverse of 776022343 is
**343220677** - Previous prime number is
**53**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 34
- Digital Root 7