Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>75</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>75</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>75</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>75</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>75</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>3</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>75</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>20</mn><mo>+</mo><mn>5</mn><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>40</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>20</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mo>⋅</mo><mo>-</mo><mn>4</mn><mo>+</mo><mn>5</mn><mrow><mo>(</mo><mi>i</mi><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>40</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Do you know how to Evaluate (-20+ square root of -75)/40? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred million eighty-three thousand eight hundred eighty-seven |
---|

- 2100083887 has 4 divisors, whose sum is
**2291000616** - The reverse of 2100083887 is
**7883800012** - Previous prime number is
**11**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 37
- Digital Root 1

Name | six hundred seven million eight hundred sixty-four thousand nine hundred eighty-two |
---|

- 607864982 has 8 divisors, whose sum is
**911921976** - The reverse of 607864982 is
**289468706** - Previous prime number is
**32003**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 50
- Digital Root 5

Name | two hundred million four hundred seven thousand one hundred forty-two |
---|

- 200407142 has 32 divisors, whose sum is
**340381440** - The reverse of 200407142 is
**241704002** - Previous prime number is
**139**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 20
- Digital Root 2