Rewrite <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Check that the middle term is two times the product of the numbers being squared in the first term and third term.

Rewrite the polynomial.

Factor using the perfect square trinomial rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>b</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> , where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>4</mn></mstyle></math> .

Do you know how to Factor x^2-8x+16? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred fifty-eight million eight hundred fifty-three thousand eight hundred eighty |
---|

- 1558853880 has 256 divisors, whose sum is
**8539914240** - The reverse of 1558853880 is
**0883588551** - Previous prime number is
**439**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 51
- Digital Root 6

Name | seven hundred one million one hundred eighty-nine thousand five hundred eleven |
---|

- 701189511 has 16 divisors, whose sum is
**770868000** - The reverse of 701189511 is
**115981107** - Previous prime number is
**569**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 33
- Digital Root 6

Name | one billion three hundred seventy-four million five hundred ninety-three thousand six hundred forty-nine |
---|

- 1374593649 has 32 divisors, whose sum is
**1600646400** - The reverse of 1374593649 is
**9463954731** - Previous prime number is
**353**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 51
- Digital Root 6