Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>12</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>3</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn><mo>+</mo><mn>2</mn><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>40</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mo>⋅</mo><mo>-</mo><mn>4</mn><mo>+</mo><mn>2</mn><mrow><mo>(</mo><mi>i</mi><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>40</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Do you know how to Evaluate (-8+ square root of -12)/40? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | seven hundred eighteen million one hundred eighty-eight thousand seven hundred thirty-eight |
---|

- 718188738 has 16 divisors, whose sum is
**1436640096** - The reverse of 718188738 is
**837881817** - Previous prime number is
**10771**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | two hundred twenty-two million six hundred thirteen thousand nineteen |
---|

- 222613019 has 4 divisors, whose sum is
**230289360** - The reverse of 222613019 is
**910316222** - Previous prime number is
**29**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 26
- Digital Root 8

Name | one billion three hundred three million three hundred eighty-three thousand five hundred seventy-six |
---|

- 1303383576 has 128 divisors, whose sum is
**6404189184** - The reverse of 1303383576 is
**6753833031** - Previous prime number is
**2207**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3