Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>18</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>18</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn><mo>+</mo><mn>3</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>3</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>3</mn><mo>⋅</mo><mo>-</mo><mn>4</mn><mo>+</mo><mn>3</mn><mrow><mo>(</mo><mi>i</mi><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Do you know how to Evaluate (-12+ square root of -18)/60? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred sixty-three million seven hundred seventy-eight thousand two hundred eighty |
---|

- 363778280 has 64 divisors, whose sum is
**1507572000** - The reverse of 363778280 is
**082877363** - Previous prime number is
**43**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8

Name | two hundred thirteen million two hundred forty thousand thirty-six |
---|

- 213240036 has 16 divisors, whose sum is
**639720144** - The reverse of 213240036 is
**630042312** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 21
- Digital Root 3

Name | seven hundred seventy-four million seven hundred forty-four thousand five hundred forty-seven |
---|

- 774744547 has 8 divisors, whose sum is
**795304640** - The reverse of 774744547 is
**745447477** - Previous prime number is
**73**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 49
- Digital Root 4